Eosinophil major basic protein increases membrane permeability in mammalian urinary bladder epithelium.

نویسندگان

  • Teri J Kleine
  • Gerald J Gleich
  • Simon A Lewis
چکیده

The eosinophil granule protein major basic protein (MBP) is toxic to a wide variety of cell types, by a poorly understood mechanism. To determine whether the action of MBP involves an alteration in membrane permeability, we tested purified MBP on rabbit urinary bladder epithelium using transepithelial voltage-clamp techniques. Addition of nanomolar concentrations of MBP to the mucosal solution caused an increase in apical membrane conductance only when the voltage across the apical membrane was cell interior negative. The magnitude of the MBP-induced conductance was a function of MBP concentration, and the rate of the initial increase in conductance was a function of the transepithelial voltage. The MBP-induced conductance was nonselective for K+ and Cl-. Mucosal Ca2+ reversed the induced conductance, whereas mucosal Mg2+partially blocked the induced conductance and slowed the rate of the increase in conductance. The induced conductance was partially reversed by changing the voltage gradient across the apical membrane to cell interior positive. Prolonged exposure resulted in an irreversible loss of the barrier function of the urinary bladder epithelium. These results suggest that an increase in cell membrane ion permeability is an initial step in MBP-induced loss of barrier function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eosinophil peroxidase increases membrane permeability in mammalian urinary bladder epithelium.

Eosinophil peroxidase (EPO), a cationic protein found in eosinophils, has been reported to be cytotoxic independent of its peroxidase activity. This study investigated with electrophysiological methods whether EPO is toxic to mammalian urinary bladder epithelium. Results indicate that EPO, when added to the mucosal solution, increases apical membrane conductance of urinary bladder epithelium on...

متن کامل

ACELL Mar. 45/3

Kleine, Teri J., Gerald J. Gleich, and Simon A. Lewis. Eosinophil peroxidase increases membrane permeability in mammalian urinary bladder epithelium. Am. J. Physiol. 276 (Cell Physiol. 45): C638–C647, 1999.—Eosinophil peroxidase (EPO), a cationic protein found in eosinophils, has been reported to be cytotoxic independent of its peroxidase activity. This study investigated with electrophysiologi...

متن کامل

The Anatomic Site of the Transepithelial Permeability Barriers of Toad Bladder

An examination of the mucosal epithelium of the urinary bladder of the toad reveals that the two major cell types which abut on the urinary surface, the granular and mitochondria-rich cells, also contact the basement membrane. Thus, the epithelium functions as a single cell layer. Although basal cells are interpolated between the granular cells and the basement membrane over a large portion of ...

متن کامل

Single anion-selective channels in basolateral membrane of a mammalian tight epithelium.

Basolateral membrane chloride permeability of surface cells from rabbit urinary bladder epithelium was studied using the patch-clamp technique. Two types of anion-selective channel were observed. One channel type showed inward rectification and had a conductance of 64 pS at-50 mV when bathed symmetrically by saline solution containing 150 mM chloride; the other resembled high-conductance voltag...

متن کامل

Urothelial function reconsidered: a new role in urinary protein secretion.

Mammalian bladder epithelium functions as an effective permeability barrier. We demonstrate here that this epithelium can also function as a secretory tissue directly involved in modifying urinary protein composition. Our data indicate that normal bovine urothelium synthesizes, as its major differentiation products, two well-known proteases: tissue-type plasminogen activator and urokinase, as w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 275 1  شماره 

صفحات  -

تاریخ انتشار 1998